

MULTIPLEXED MULTISPECTRAL FILTER ARRAY BY 3D SPHERE PACKING DESIGN

A. ALVARADO^{1,*}, N. DÍAZ¹, P. MEZA², AND E. VERA¹ ¹School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso ²Department of Electrical Engineering, Universidad de la Frontera

* alejandro.alvarado@pucv.cl

INTRODUCTION

Spectral imaging is a technique used in many fields to acquire spatio-spectral information. One method of acquisition is the snapshot with a Multispectral Filter Array (MSFA), but the signal-to-noise ratio (SNR) decreases with a higher number of bands. However, multiplexing (MUX) the bands to extend the design of the MSFA towards a Multiplexed Multispectral Filter Array (MMSFA) can improve the measurement SNR.

SPHERE PACKING COMPARISON

METHOD

Optimal Sphere Packing (OSP) MSFA is based on packing equal spheres in a cubic container, optimizing the density of spheres. The distance between a set of V spheres is given by

 $d^*(V) = \max(\min_{1 \le k_1 < k_2 \le V} D_{k_1, k_2}), \quad (1)$

where D_{k_1,k_2} is the euclidean distance between the centers of all spheres, the theoretical upper bound SP density for the optimal MSFA as

$$\rho^*(V) = 2\sqrt[3]{\frac{(\sqrt{V}+1)^3}{4V\sqrt{2}}},$$

being the OSP density is $\rho_{\Lambda_3} = \frac{\pi}{\sqrt{18}} \approx 0.74$ [1].

• **Theorem:** No packing of congruent balls in Euclidean three space has a density greater than that of the face-centered cubic packing ρ_{Λ_3} [2].

SIMULATIONS RESULTS

Spatial quality comparison from Tokyotech dataset with spectral resolution of 56 bands

(2)

(3)

Face centered cubic unit cell

The acquisition of the spectral mosaic image projection of L spectral bands is

$$\mathbf{Y} = \sum_{l=1}^{L} \mathbf{X}_l \odot \mathbf{C}_l + \mathbf{\Omega},$$

where $\mathbf{X}_l \in \mathbb{R}^{M \times N}$ is the l^{th} spectral band of the datacube with $M \times N$ number of pixels, $\mathbf{C}_l \in \{0,1\}^{M \times N}$ is the Coded Aperture (CA) and $\mathbf{\Omega} \in \mathbb{R}^{M \times N}$ is the Gaussian noise. The behavior of our MMSFA by 3D sphere packing with 3 MUX is represented as follows **CA and sphere for OSP-MSFA and 3 MUX**

Algorithms	Metrics	No Mux	RND 3 Mux	SP 3 Mux	RND 5 Mux	SP 5 Mux
PnP-GAP-3DTV	PSNR (dB) ↑	24.86	25.46	26.35	25.92	27.13
	SSIM ↑	0.7455	0.7804	0.8122	0.8025	0.8300
	SAM ↓	0.0781	0.0982	0.0845	0.1028	0.0837

Spectral quality comparison from Tokyotech dataset with spectral resolution of 56 bands

BIBLIOGRAPHY

[1] J. Kepler, The Six-Cornered Snowflake. Philadelphia, PA, USA: Paul Dry Books, 2010.
[2] T. C. Hales, "A proof of the kepler conjecture," Annals of mathematics, vol. 162, no. 3, 2005.
[3] N. Diaz, A. Alvarado, P. Meza, F. Guzman, and E. Vera, "Multispectral filter array design by optimal sphere packing," IEEE TIP. 32, 2023.

FUNDING

ANID DOCTORADO NACIONAL (2023-21231970); ANID FONDECYT (1221883, 1241149, EXPLORACION 13220234, Postdoctorado 3230489)

CONCLUSIONS

• The advantages of Sphere Packing approach include: extend the MSFA to a MMSFA, and reducing artifacts such as false colors and the zipper effect of reconstruction algorithms. Additionaly, this method extend the number of filters that would be acquired avoiding SNR reduction.

