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Abstract—This paper studies a new motion estimation method
based on convolutional sparse coding. The motion estimation
problem is formulated as the minimization of a cost function
composed of a data fidelity term, a spatial smoothness constraint,
and a regularization based on convolution sparse coding. We
study the potential interest of using a convolutional dictionary in-
stead of a standard dictionary using specific examples. Moreover,
the proposed method is evaluated in terms of motion estimation
accuracy and compared with state-of-the-art algorithms, showing
its interest for cardiac motion estimation.

Index Terms—Ultrasound imaging, cardiac motion estimation,
Convolutional dictionary, sparse representation

I. INTRODUCTION

Ultrasound imaging (UI) is a high temporal resolution
imaging modality used in many clinical applications such as
echocardiography due to its low cost, non-ionization charac-
teristics, and comfort for the patient. An active research area
in UI is tissue motion estimation. In particular, the problem of
cardiac motion estimation in UI has been addressed with dif-
ferent approaches based on block-matching [1], the monogenic
signal [2], and B-splines [3]. More recently, Ouzir et al. have
introduced in [4] an energy minimization problem to estimate
the motion of the heart. The proposed energy was a linear
combination of a data fidelity term, a smoothness term and
a regularization constructed from a sparse decomposition in a
dictionary of motions determined using a standard patch-based
dictionary learning method. The resulting motion estimation
algorithm showed better results than classical methods such
as block-matching, the monogenic signal, and B-splines.

This paper investigates a new motion estimation method
based on convolutional dictionary learning (CDL). The moti-
vation of this study is to estimate the heart motion by using
consecutive frames of ultrasound images as inputs to build
a convolutional dictionary [5]. Particularly, the kth cardiac
motion image sk is modeled as a convolution between the co-
efficient maps xm,k and a set of M filters dm. The coefficient
maps indicate where the filters are activated, and the filters are

supposed to model specific structures contained in the images
of interest. A particular example is displayed in Fig. 1, where
Fig. 1(a) displays one frame of the heart motion, Fig. 1(b)
shows the estimated filters for the image and Fig. 1(c) shows
the map of the cardiac motions associated with the red patch
of the image. Note that the convolutional dictionary of Fig.
1(b) was obtained using M = 32 filters of size L × L with
L = 8. In Fig. 1(c), the cardiac motions of the red patch are
written as the linear combination of 10 filters convolved with
a respective set of coefficient maps. Note that only 10 filters
are required to represent this patch and that the 22 remaining
filters are inactive, i.e., with zero coefficients. To improve
the quality of the visualization, only the non-zero values of
the coefficient maps have been shown. The key advantage of
using a convolutional sparse model is its translation-invariant
property which may offer a better representation in comparison
with standard dictionary learning strategies. Indeed, each patch
of the image can be sparsely represented with the proposed
model by a single shift-invariant local dictionary [6].
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Fig. 1. Example of a sparse representation of a cardiac motion patch using a
convolutional dictionary. The filter size is L×L with L = 8 and the number
of filters is M = 32.



This paper is organized as follows. Section II introduces the
motion estimation problem along with the proposed solution
based on sparse regularization. Section III summarizes some
key elements of CDL and its applications to cardiac motion es-
timation. Section IV evaluates the performance of the proposed
motion estimation method highlighting the interest of CDL for
UI. Conclusions and future work are reported in Section V.

II. MOTION ESTIMATION

The 2D motions for a pair of successive frames (rk, rk+1) ∈
RJ×N acquired at time instants k and k + 1 are denoted as
(sk,x, sk,y) ∈ RJ×N where sk,x and sk,y are the motions
along the x and y axes. Since the motion estimation problem
is considered independently the displacement vector is equal
to sk = sk,x or sk = sk,y . The motion estimation field is
formulated as the minimization of a cost function with energy
Edata(sk) penalized by spatial and sparse regularizations, i.e.,

argmin
x,sk

{
Edata(sk) + λdEsparse(sk,x) + λsEspatial(sk)

}
(1)

where (λd, λs) ∈ R2 are two parameters balancing the
importance of the data fidelity and regularization terms

A. Data Fidelity Term

The maximum likelihood (ML) method is a well accepted
technique for motion estimation [7]. It maximizes the condi-
tional probability density function of the measurement vector
rk+1 given rk and s. The ML estimator is classically computed
in the negative log-domain

argmin
s
− ln [p(rk+1)|rk(n), s]. (2)

Straightforward computations exploiting the Rayleigh statistics
of ultrasound images detailed in [4] lead to the following data
fidelity term

Edata(s) = −2d(s) + 2 log[e2d(s) + 1] + C (3)

where

d(s) =
1

b

N∑
n=1

[rk+1(n+ s(n))− rk(n)]

n indicates the pixel index, s = [s(1), . . . , s(N)]T is the
vectorized motion, rk = [rk(1), . . . , rk(N)]T is the vectorized
ultrasound image in frame k, and C = − log(2σ4/b) is a
known constant (depending on a scale parameter σ ∈ R+ and
on the linear gain associated with the formation of the log-
compressed B-mode image).

B. Spatial Regularization

The spatial regularization term promotes the smoothness of
the motion estimation field and is defined as

Espatial(s) = ‖∇s‖22 (4)

where ∇ denotes the gradient operator, and ‖.‖22 is the squared
`2 norm which promotes low spatial gradients. This constraint
imposes smooth fluctuations of the motion field which corre-
sponds to a first-order spatial regularization [8].

C. Sparse Regularization

The proposed sparse regularization determines the motion
sk that is best represented as a convolution between M filters
dm and the sparse coefficient maps xm, i.e,

Esparse(sk,xk) =

∥∥∥∥∥sk −
M∑

m=1

xm ∗ dm

∥∥∥∥∥
2

2

(5)

with a sparse constrain on xm (which will appear in (8)).
The filters are composed of specific patterns contained in the
training motions and xm are the activation maps of each atom.
Motivations for using this kind of regularization include the
fact that convolutional sparse representations are invariant to
translations contrary to standard dictionary learning techniques
[5]. Combining linearly (3), (4) and (5) yields to the proposed
energy which is minimized for motion estimation in (1). This
energy exploits the Rayleigh distribution of the noise and the
spatial and sparse regularizations. The next section introduces
the algorithm proposed to solve (1).

III. OPTIMIZATION STRATEGY

The regularization (5) assumes that an image frame of
cardiac motion can be well represented by the sum of M
convolutions between the coefficient maps and the corre-
sponding filters. More precisely, the kth cardiac frame image
sk ∈ RJ×N is approximated as follows

sk ≈
M∑

m=1

dm ∗ xm (6)

where ∗ denotes the two-dimensional convolution. In order to
solve (1), we propose to use Algorithm 1 which consists of
three steps: 1) dictionary learning (see line 2), sparse coding
(see line 3), and cardiac motion estimation (see line 6). These
three steps are detailed below

Algorithm 1 Motion estimation field for a pair of images using
convolutional dictionary learning.
Input: rb,1, rb,2, λs, λd,K, J, λ, ρ,

s̃ = LADdist motions, ŝ = LADprox motions
Output: s

1: function MEFCDL(rb,1, rb,2, λs, λd,K, J, λ, ρ, s̃, ŝ)
2: dm ← Computes the dictionary by solving (7)
3: xm ← Computes the coefficient maps by solving (8)
4: for k ← 1,K do
5: for j ← 1, J do
6: argmins

{
Edata(rb,1, rb,2, sj−1)+

λs‖∇sj−1‖22 + λd(k)‖sj−1 −
∑

m dm ∗ xm‖22
}

s.t. ‖dm‖ = 1 ∀m . Motion estimation
7: return s . (Estimated motion field)

A. Dictionary Learning

In the first step of Algorithm 1, a dictionary is estimated
off-line by using a set of training cardiac motions denoted



as s̃. The dictionary is obtained by solving the following
optimization problem

argmin
dm,xk,m

1

2

∑
k

∥∥∥∥∥∑
m

xk,m ∗ dm − s̃k

∥∥∥∥∥
2

2

+ λ
∑
m

∑
k

‖xk,m‖1

s.t. ‖dm‖ = 1 ∀m = 1, ...,M
(7)

which was solved by using the alternating direction method
of multipliers (ADMM) [9].

B. Sparse Coding

In the second step of Algorithm 1, the coefficient maps xm

are computed from cardiac motions ŝk. More precisely, xm is
estimated by using the dictionary dm obtained in (7) (see line
2) and by solving the following problem using ADMM

argmin
xm

1

2

∥∥∥∥∥∑
m

xm ∗ dm − ŝk

∥∥∥∥∥
2

2

+ λ
∑
m

‖xm‖1. (8)

C. Estimation Motion

In the last step of Algorithm 1, the cardiac motion esti-
mation are estimated using an algorithm similar to the one
proposed in [4]. In order to take into account the modified
dictionary learning regularization, we consider the following
optimization problem

argmin
s

{
Edata(rb,1, rb,2, sj−1) + λs‖∇sj−1‖22 + λd

×‖sj−1 −
∑
m

dm ∗ xm‖22
}

s.t. ‖dm‖ = 1 ∀m. (9)

The minimization problem (9) can be solved by setting the
gradient of the cost function to zero and following the ap-
proach in [3]. Note that the horizontal and vertical motions sx
and sy are computed independently.

IV. EXPERIMENTAL RESULTS

This section analyzes the performance of the proposed mo-
tion estimation based on CDL and compares it with standard
dictionary learning [4] and with other state-of-the-art methods.
For this comparison, we consider highly realistic simulations
performed using data with a controlled ground-truth generated
using the method studied in [10]. The proposed approach is
compared with the recent method of [4] (which showed very
competitive results when compared to block-matching [1], the
monogenic signal [2], and B-splines [3]).

A. Simulation Scenario

Filters: The filters were computed with the pathological
sequence LADdist by solving (7) with 500 iterations. The
number of filters was set to M = 32, and the filter size
was L × L with L = 48. The regularization parameter
was λ = 0.001. Fig. 2 shows the corresponding set of
convolutional dictionaries trained with horizontal, and vertical
cardiac motions. Note that the filters trained with horizontal
motions are depicted in Fig. 2 (a), (c), (e), (g), whereas the
filters trained with vertical motions are shown in Fig. 2 (b), (d),
(f), (h). Three scenarios were investigated: 1) one dictionary
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Fig. 2. Dictionaries obtained using LADdist motions (with a filter size L×L
with L = 32, and a number of filters M = 48): (top row) An example of
filters for the 1st frame. (second row) A dictionary estimated for the whole
cardiac cycle. (third row) A dictionary for systole. (bottom row) A dictionary
for diastole. The first columns (a),(c),(e),(g) show dictionaries trained with
horizontal motions, (b),(d),(f),(h) are for dictionaries trained with vertical
motions. All the dictionaries are obtained with 500 iterations.

of filters for each frame of motions (top-row and Fig. 2(a),
(b)), 2) one dictionary of filters for the whole cardiac cycle
(second row and Fig. 2(c), (d)), 3) one dictionary for systole
frames (frames 1-12) (third-row and Fig. 2(e), (f)) and one
dictionary for diastole frames (frames 13-33) (bottom-row and
Fig. 2(g), (h)). Finally, the coefficient maps were obtained from
(8) with the pathological sequence of LADprox displacements
(500 iterations) and a fixed dictionary of filters (see Section
IV-A).

Motions: The regularization parameter was set to λs =
0.75 and λd was logarithmically increased from 1 × 10−9 to
1 × 10−3 in 12 iterations. The parameters of the three steps
of algorithm 1 are summarized in Table I. In the table II is
depicted a detailed cross-validation to select the filter size and
filter number.

B. Performance Measure

In order to evaluate the performance of the differ-
ent methods, we computed the endpoint error as in
[2]. This error is defined for the nth pixel as en =√
[sx(n)− ŝx(n)]2 + [sy(n)− ŝy(n)]2, where sx(n), sy(n),

ŝx(n), ŝy(n) are the true and estimated (horizontal and ver-
tical) motions at pixel n. Fig. 3 shows the mean endpoint
error for the LADprox sequence and the three scenarios. The
averaged endpoint errors for the different scenarios are (1)
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Fig. 3. Mean endpoint error (in mm) for the LADprox sequence by (a) training a convolutional dictionary for all the frames (error: 0.1556), (b) training a
convolutional dictionary for each frame (error: 0.1601) and (c) training two convolutional dictionaries (one for systole and one for diastole motions) (error:
0.147). The error for the method of [4] is 0.147.

TABLE I
PARAMETERS FOR EACH STEP OF ALGORITHM 1, DICTIONARY LEARNING,

SPARSE CODING, AND CARDIAC MOTION ESTIMATION.

Step Parameters Values

Dictionary
learning

Database LADdist
Filter size 48× 48

Filters number M = 32
Sparsity term λ = 0.001

Number of iteration 500
Sparse
coding

Database LADprox
Number of iteration 500

Cardiac
motion
estimation

Regularization parameter λs = 0.75
Sparsity term (Systole) λd = {1× 10−6 × 10−3}
Sparsity term (Diastole) λd = {1× 10−9 × 10−2}

TABLE II
COMPARISON OF MEAN ENDPOINT ERROR VARYING THE FILTERS NUMBER

AND THE FILTER SIZE FOR A ONE DICTIONARY SYSTOLE AND ONE
DICTIONARY FOR DIASTOLE. NOTICE THE BEST RESULT IS ATTAINED

WITH M = 32 AND L = 48.

Filter number, M
8 16 24 32 48

Fi
lte

r
si

ze
,L

8 0.1473 0.1477 0.1477 0.1475 0.1477
16 0.1476 0.1477 0.1478 0.1478 0.1479
24 0.1474 0.1476 0.1469 0.1470 0.1475
32 0.1477 0.1471 0.1477 0.1469 0.1475
40 0.1476 0.1473 0.1478 0.1482 0.1474
48 0.1470 0.1467 0.1466 0.1465 0.1470

0.1556 (2) 0.1601, (3) 0.147, with a preference for learning
different dictionaries for the systole and diastole frames.

C. Realistic Simulations

This section considers highly realistic simulations using B-
mode ultrasound data published in [?] including ground-truth
of horizontal and vertical motions. More precisely, we used the
LADprox sequence, which correspond to a proximal occlusion
of the left anterior descending artery. Each sequence is a set of
3D images (with 224×176×208 voxels, voxel size 0.7×0.9×
0.6 mm, frame rate 21 − 23 Hz [?]). The sequence contains
34 images of one complete cardiac cycle. For more details,
the reader is invited to consult [?] and [10].
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Fig. 4. Error map for the 5th frame. Motion estimation using standard
dictionary learning [4] (left) and proposed method (right).

Frame 5 Groundtruth

Frame 5 Groundtruth

Frame 5 Groundtruth

Frame 5 Groundtruth

Frame 5 Groundtruth

Frame 5 DL

Frame 5 DL

Frame 5 DL

Frame 5 DL

Frame 5 DL

Frame 5 CDL

Frame 5 CDL

Frame 5 CDL

Frame 5 CDL

Frame 5 CDL

Fig. 5. Ground-truth (top) and estimated meshes of the 5th frame of
motion estimation using standard dictionary learning [4] (center), and motion
estimation using convolutional dictionary (bottom).

In order to analyze the performance of the different algo-
rithms, the error maps of the displacement estimates were



computed. Fig. 4 displays the error maps for the 5th frame
of the LADprox sequence. Fig. 4 (left) shows the error maps
obtained for [4] (which uses a standard dictionary learning),
and Fig. 4 (right) for the algorithm 1 (which uses CDL). Fig. 5
shows a representative example of the estimated motion field
for the 5th frame which includes the ground-truth Fig. 5 (top),
the approach in [4] with standard dictionary learning Fig. 5
(center), the proposed method in algorithm 1 by using convolu-
tional dictionary Fig. 5 (bottom). The zoomed version displays
the motion vectors obtained using the approach in [4] (standard
dictionary) and Algorithm 1 (convolutional dictionary). It is
clear that the vector computed using a standard dictionary
looks vertical. In contrast, the vector computed using CDL
better matches the ground-truth.

To show the interest of using a convolutional dictionary, the
principal component analysis [11] of the coefficient maps x
was computed, in order to highlight some correlations between
these coefficients and the cardiac motions. The coefficient
maps for the 5th frame were projected on their two first
principal components and are shown in Fig. 6(a). Clustering
the projected coefficient maps using kmeans with 2 classes
and comparing the resulting clusters displayed in Fig. 6(b)
with the corresponding motion estimation in Fig. 6(c) shows
a 94% correlation between the coefficient maps and the cardiac
motions, which shows the interest of using coefficient maps
to represent the motions 6(d).
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Fig. 6. Projection of the coefficient maps on their two first principal
components (a), and cluster assignment of the projected coefficients using
kmeans with 2 classes (b). Motions associated with the 2 clusters identified
by kmeans, which can be compared with the thresholding of the true motions
of Fig. 6(c). Thresholding of the motions for the 5th frame (c) and their
estimates (d).

V. CONCLUSIONS

This paper introduced a new method for cardiac motion
estimation in 2D ultrasound images based on a sparse de-
composition of the motions on convolutional dictionaries. The

method exploits the noise characteristics based on the B-
mode distribution of ultrasound images and regularizes the
estimation problem using a smoothing term and a sparse
decomposition of the motions in a convolutional dictionary.
The results obtained with the proposed method compares
favourably with other state-of-the-art methods. An interesting
property of the coefficients of the sparse decomposition on
a convolutional dictionary is a strong correlation with the
corresponding motions. Future work will be devoted to the
study of classification and anomaly detection methods based
on the parameters resulting from this sparse decomposition on
convolutional dictionaries.
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