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Abstract: We propose a modification to the rolling shutter mechanism found in CMOS detectors
by shuffling the pixels in every scanline. This potential hardware modification improves the
sampling of the space-time datacube, allowing the recovery of high-speed videos from a single
image using either tensor completion methods or reconstruction algorithms often used for
compressive temporal video. We also present a design methodology for optimal sampling
schemes and compare them to random shuffling. Simulations, and experimental results obtained
by optically emulating the hardware, demonstrate the ability of the shuffled rolling shutter to
capture images that allow reconstructing videos, which would otherwise be impossible when
using the traditional rolling shutter mechanism.
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1. Introduction

CMOS imaging sensors are very popular in consumer and surveillance cameras due to their
reduced cost [1], despite their low quality in contrast with CCDs. Nevertheless, as fabrication
technologies have improved, CMOS detectors are becoming the new standard in high-end cell
phones and professional and scientific cameras. They started to offer higher quantum efficiencies
and reduced noise levels even competitive to the most expensive EMCCDs. However, most
CMOS sensors are designed with a column-parallel readout circuitry known as the Rolling
Shutter (RS). All scanlines share the readout circuitry, so scanlines are readout sequentially at
different times. Also, the starting time for each scanline is delayed, accordingly, to maintain the
same exposure time per row. As such, the RS unavoidably generates unwanted distortions such a
wobble, skew, and other image artifacts [2] when imaging dynamic scenes.

The RS-derived distortions are considered a nuisance to the imaging performance. Hence,
there is a variety of research devoted to compensating them by different means [3–7]. On the other
hand, some research approaches have also pointed out that if we consider that each row is exposed
at different times, then a single RS snapshot has the potential to sample the space-time volume in
a very particular and deterministic way. Since dynamic information could potentially be extracted
from an RS shot, some recent efforts for compressive temporal imaging have been presented in
[8] and [9], where spatial multiplexing is added to the RS deterministic spatio-temporal sampling
through the use of diffusers at either the imaging or pupil plane, respectively, achieving remarkable
reconstruction frame rates from a single RS image. Nevertheless, additional multiplexing of
light comes at the expense of optical calibration and a reduced signal-to-noise. Lately, another
approach based on an array of RS cameras placed at different orientations allowed to demonstrate
that by sampling different spatial positions simultaneously, then the sampling of the space-time
datacube is improved, being able to reconstruct videos from a set of simultaneous shots from the
array [10].

In this work, we tackle the inherent lack of sampling diversity given by the RS, proposing a
slight hardware-only modification to the RS scanline mechanism. In particular, we propose to
shuffle the scanline, so it is not reading out the pixels from a unique row at a time. Instead, it
is sampling pixels from different rows at every column, not following a straight line. Then, if
feasible, it is a matter of hard-wiring the shuffled scanlines. In the end, the shuffled RS will
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work similar to the original RS, sampling all pixels once a snapshot acquisition is over. However,
pixels from diverse spatial positions–belonging to the same scanline–may be sampled at the same
time, improving the sampling diversity of the space-time datacube. Although the shuffled RS will
most likely generate a new class of distortions when sampling moving scenes, the information
contained in the captured image may be more informative regarding motion within the scene,
enabling the extraction of videos from a snapshot.

The question that arises from the novel shuffled RS scheme is: how to perform the shuffle?
The naïve approach would be to use a random shuffle. As an alternative, we present elements
for optimally designing the shuffled coding to boost the ability to recover videos. Given the
restrictions of the RS–that no pixel is repeated and only one pixel is sampled per column for
every scanline–our coding design is based on solving the Kepler conjecture [11] for sphere
packing [12], which leads to finding a solution to a 3-dimensional N2-Queens problem [13].
Our designed shuffled RS coding solutions lead to a homogeneous sampling of the space-time
datacube, potentially improving the recovery of videos from the shuffled RS snapshots.

Apart from computer simulations to model, test, and validate our proposed shuffled RS, we
also implement an optical system inspired by what has been used for compressive temporal
imaging applications–such as the CACTI [14,15] or similar in [16,17]–making use of dynamic
coded apertures to replicate the functioning of the RS. By assuming short exposure times, we can
treat the recovery of the space-time datacubes–videos–from the snapshots as a tensor completion
problem. We implement three reconstruction alternatives to demonstrate the sampling ability of
the shuffled RS and compare the advantages of coding design instead of random shuffling. We
use 3-D interpolation [18], a state-of-the-art tensor completion algorithm [19], and an adaptation
of the latest deep neural network solution used in CACTI problems [20].

Our contributions can be summarized as follows. Firstly, we propose a novel sampling scheme
for the space-time datacube using a modified RS mechanism. Secondly, we also propose a method
for optimally coding the shuffled RS that is consistent with the RS restrictions. Finally, through
simulations and experiments we validate that–if ever implemented in the CMOS hardware–the
proposed idea allows to recover videos from snapshots without the need for optical coding.

2. Observation model

In this section, we review how to model a generalized RS detector and its interaction with the
space-time datacube. If we appropriately discretize the time domain, then we can treat the RS, or
the proposed shuffled RS, as a dynamic coded aperture applied to the imaging plane.

2.1. Continuous model

In any detector class, the acquisition process is mainly dominated by three temporal factors: the
reset time, the exposure time, and the readout time. As shown in Fig. 1, if the three steps are simul-
taneous across all rows of the sensor, then we are in the presence of a Global–electronic–Shutter.
However, in the CMOS Rolling Shutter acquisition mechanism, the timing for every consecutive
row is displaced to assure that only one row is being read within the readout time.

The acquisition process for an imaging detector can be modeled as a temporal integral at the
sensor (image) plane such that

Y(x, y) =
∫ ∞

0
V(x, y, t) · S(x, y, t)dt, (1)

where (x, y) are the discrete pixel indices of the sensor, V is the time-varying optical intensity
distributed on the image sensor plane (i.e., space-time datacube), and S ∈ {0, 1} represents the
binary shutter function. For the rolling shutter, the characteristics of S are determined by the
acquisition parameters: Readout time tr, the exposure time te, and the delay time td.
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Fig. 1. Electronic shutter comparison. (a) simultaneous readout: Global Shutter; (b)
row-by-row time-shifted readout: Rolling Shutter.

2.2. Discrete model

In the discrete-time regime, the model of the RS mechanism can be described as follows

Y =
Nt∑︂
l=1

Xl ⊙ Cl +Ω, (2)

where Nt is the number of frames in the datacube, Xl ∈ R
Nx×Ny is the lth frame with Nx × Ny

number of pixels, Cl ∈ R
Nx×Ny is the lth coded aperture, and ⊙ is the Hadamard product. Also, Ω

is assumed to be a Gaussian readout noise component.
To analyze the different RS versions, we will neglect the reset time and assume that the

exposure time is equivalent to the readout time, becoming the discrete-time unity. In this way, we
can assure that only one scanline is sampled at a given frame time. In a traditional CMOS with
RS, Cl is defined row by row, as shown in Fig. 2(a).

Fig. 2. Rolling shutter sampling. (a) sequential rolling shutter sampling; (b) randomly
shuffled rolling shutter; (c) designed shuffled rolling shutter.

3. Shuffled rolling shutter code design

We propose to shuffle the position of the pixels being scanned by the RS mechanism. In this way,
a scanline is not a single row anymore, but rather it is distributed at different column positions. A
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randomly shuffled RS is shown in Fig. 2(b), where we can notice that only one pixel is sampled
per column at a given time, in the same way as the original straight RS scanline.

We wonder how to choose the shuffling mechanism to make the sampling of the space-time
datacube as uniform as possible, in principle in the spatial domain, avoiding clusters of contiguous
pixels. If we leave it as a random permutation, we can still end up with solutions where two
neighboring pixels are being sampled. For example, in Fig. 2(c) we show a designed scheme that
provides a more homogeneous sampling of the spatial domain. However, if we also consider that
an extended exposure time will make the sampling for a given pixel persistent to the following
frames, then we also have to consider the distance between voxels of the datacube from different
frames, making the sampling in all dimensions more even.

3.1. Shuffled RS coding optimization

The design and optimization of the coded aperture for the shuffled RS can be seen as a sphere
packing problem in a cubic container [12]. Specifically, let n be the number of spheres to be
packed in a cubic container. Assuming a square detector, the size of the cubic container (Nx + 1)3
is determined by Nx, which corresponds to the RS detector’s pixels in one direction. Notice
that the size of the cubic container is augmented by 1 by assuming points packing, which is an
equivalent problem to the sphere packing. According to the Kepler conjecture [11,21,22], no
packing of congruent balls in a three-dimensional Euclidean space has a density higher than that
of the face-centered cubic packing, which corresponds to ρ = π

3
√

2
= 0.7405. The RS restriction

where scanlines only have one pixel per column and the fact that the sampled pixels are fixed
forcing the center of the spheres to be fixed as well, finally constrain the sphere packing problem
to be approximately equivalent to a three-dimensional queens problem (3DN2

x QP) [13]. The Nx
queens problem is the one of placing Nx chess queens on an Nx × Nx chessboard so that two
queens never attack each other. Similarly, the 3D N2

x queens problem deals with placing N2
x chess

queens on Nx chessboards with size Nx × Nx, so that two queens never attack each other along
any dimension. The shuffled RS imposes uniqueness in columns and the temporal axis while
providing several degrees of freedom in the diagonals, turning the optimization for the shuffled
RS a relaxed version of the 3DN2

x QP. Therefore, the proposed RS coded aperture patterns can be
found in the solution space for the 3DN2

x QP as follows

G = ((a ⊙ I + b ⊙ J) mod Nx) + 1, (3)

where I = xT ⊗ y such that I ∈ RNx×Nx , being x a vector of all ones such as x ∈ RNx , and
y = [1, . . . , Nx]

T such as y ∈ RNx , ⊙ denotes the Hadamard product, and ⊗ represents the
Kronecker product. Matrix J is given by J = x ⊗ yT such that J ∈ RNx×Nx , and 1 ∈ RNx×Nx is a
all ones matrix. If we want to make the sampling as uniform as possible in both the spatial and
temporal directions, then we have to search for the pair of parameters a and b that maximize the
distance between the centers of the spheres. Then, the resulting optimal RS coded aperture is:

Ci,j,l =

{︄
1 if l = Gi,j

0 if l ≠ Gi,j.
(4)

Matrix G can be reorganized as pu = [i, j, Gi,j]
T such that pu ∈ R

3 denote the centers of
n = NxNy spheres, where u ∈ {1, . . . , n}. These centers represent active positions in the coded
aperture Ci,j,l, where i ∈ {1, . . . , Nx}, j ∈ {1, . . . , Ny}, and l ∈ {1, . . . , Nt}, being Nt the number
of frames. Thus, the distance between a set of n spheres is given by

d∗(n) = min
1≤u<v≤n

∥pu − pv∥2, (5)

where pu and pv are the centers of the uth and vth sphere, respectively. Exploiting the Kepler
conjecture and knowing the volume of the spheres, we deduce the theoretical upper bound for the
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RS sphere packing density as

d(n) = 2 3

√︄
(
√

n + 1)3

4n
√

2
, (6)

where the optimal density of sphere packing is ρ = 0.7405 = π√
18
= 4nπr3

3(
√

n+1)3 , noting that Nx =
√

n.
The optimal known unconstrained sphere packing solutions (available in the magentaPackomania
web site.) are compared with the RS sphere packing in Fig. 3. Clearly, the RS restrictions lead to
lower densities, though we postulate that the optimal sphere packing density for the shuffled RS
tends to ρRS ≈ 0.696 for higher dimensions.

Fig. 3. Sphere packing density comparison for different dimensions. (blue line) theoretical
upper bound where the cubic container has size (Nx + 1)3, and the total number of spheres is
n = NxNy; (red line) best known optimal sphere packing without the RS restriction; (green
line) sphere packing density with RS restriction.

As an example, Fig. 4 depicts a comparison of random and designed low-dimensional sampling
codes G for a 9 × 9 × 9 datacube obtained using Eq. (3). The sampling scheme for every scanline
is shown at the left while the 3D representation for the sampling points in G are shown as
spheres in the middle. Note that the colors in the codes and spheres represent different instants
in time, and the spheres’ radius are related to the minimum distance between all of them. The
minimum distance between every sphere and its nearest neighbor is shown on the right, where
the designed codes provide a uniform distance between the sampled voxels within the datacube.
In fact, the minimum distance between the center of the spheres for the random pattern of 81
balls is min(D) = 1.4142, while for the designed pattern is min(D) = 2.2361, as shown by the
larger touching spheres depicted in the sphere packing.

3.2. Parameters selection algorithm

We propose Algorithm 1 to find the optimal parameters a and b for the shuffled RS code design.
For a square detector, the search space for a and b is symmetric and it has a size of Nx × Nx. An
example of the search space of size 100× 100 is depicted in Fig. 5(a). To reduce the search space,
the algorithm exploits the symmetries as seen in Fig. 5(b). The color on both search spaces in
Fig. 5 denotes the minimum distance between the center of the spheres, obtained from matrix D.
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Fig. 4. Comparison between random and designed shuffled RS sampling codes. (upper
row) random shuffle; (lower row) designed shuffle; (left) code design for the shuffled RS
scanlines represented by different colors; (middle) sphere packing using a radius d = Da,b

2
that depends on the minimum distance between voxels; (right) minimum distance matrix
between sampled voxels.

In essence, it is only necessary to select the entries of f ∈ RM such that fm and Nx are relatively
prime, where M = ⌊ Nx

2 ⌋. Two integer numbers fm and Nx are relatively prime, or also called
co-prime, if the greatest common divisor between fm and Nx is 1. The resulting vector is s ∈ RK ,
and only contains the co-primes with respect to Nx. The coded aperture is computed using Eq. (3)

Fig. 5. Comparison of the complete search space against the reduced search space using
the proposed algorithm to select the parameters a and b for the shuffled RS code design.
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Algorithm 1 Selection of a and b based on search space reduction using the co-prime assumption.
Input: Nx ▷ Inputs of the algorithm.
Output: a and b. ▷ Output of the algorithm.

1: function Parameter Selection( Nx)
2: M = ⌊ Nx

2 ⌋

3: f ← [1, . . . , M]
4: k = 0
5: for m← 1, M do
6: if GCD(fm, Nx)=1 is true then ▷ To select only entries of f such that GCD(fm,Nx)=1
7: k = k + 1
8: sk ← fm
9: K ← Size of s ▷ s ∈ RK

10: for i← 1, K do
11: for j← i, K do
12: G← Coded aperture RS(si, sj) ▷ Computes G by solving Eq. (3).
13: q← Verify RS restriction(G) ▷ Verify Rolling Shutter restriction.
14: if q is true then
15: Dsi,sj ← Compute distance(G, Nx) ▷ Computes the minimum distance

matrix in a patch of size
√

Nx ×
√

Nx of the matrix G.
16: max D ▷ Select a = s̄i and b = s̄j in D such that Da,b has the maximum value.
17: return a and b ▷ Output of the algorithm.

and 4 according to the selected a = si and b = sj at each iteration. To verify the RS restriction,
the designed entries in the RS matrix, Gi,j, should have an unique value along the corresponding
column. The minimum distance between the centers of the spheres is computed for a patch of
size
√

Nx ×
√

Nx, which is stored in Dsi,sj . The coordinates Ds̄i,s̄j that correspond to the column
and row with the maximum value in the distance matrix D denotes the optimal values for the
parameters a and b, a = s̄i and b = s̄j, becoming the output of the algorithm.

4. Video reconstruction

If we select a short exposure time such that there is no temporal overlap between scanlines, we can
consider the sampling of the shuffled RS as a random–or pseudo-random, if designed–sampling
of the discrete video datacube. Therefore, every pixel of the shuffled RS is sampling one voxel,
making the recovery of the video from a single snapshot equivalent to a tensor completion
problem, i.e., filling the holes not sampled in the datacube by using the information provided by
the sampled values. Since the amount of frames is proportional to the number of pixels Nx in one
of the spatial domains (rows), we may end up with only 100N2

x
N3 =

100
Nx

% of valid samples from the
whole datacube, becoming a tough tensor completion problem from a sparse set of samples as
the dimensionality increases. Despite losing temporal resolution, and to ease the problem, we
designed two approaches to shorten the datacube in the temporal domain by combining frames.
We start by expanding the measurements Y into the datacube X̂l by using the coded apertures Cl
such that

X̂l = Cl ⊙ Y. (7)

Then, the first approach combines V = 2r frames into the jth output frame according to

X̄j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁l+r−1

j=0 X̂l l<r + 1∑︁l+r−1
j=l−r X̂l r + 1 ≤ l ≤ Nt − (r + 1)∑︁Nt
j=l−r X̂l l>Nt − (r + 1).
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This overlapped method is used to perform Nearest Neighbor Interpolation (NNI) [18],
recovering up to Nt frames. Although NNI does not implicitly exploit prior information to
perform the reconstruction, the inherent spatial-temporal correlation of videos of natural scenes
may contribute to the reconstruction quality. Our second approach consists in combining r
non-overlapped frames of X̂l, increasing the number of samples per frame from 1

Nr
to r

Nr
, where

r<<Nr is

X̄j =

(j+1)(r−1)∑︂
l=(jr)

X̂l. (8)

This approach is used in the tensor completion method, able to recover Nt
r frames. It is

well-known that tensor completion methods barely work when having less than a 10% of sampling
density, so this is important to define the number of frames to be combined. For this work, we
choose the Low-Rank Tensor Completion using Total Variation (LRTC-TV-II) method [19] since
it is the one that demonstrated to work with the smallest densities, while the TV regularizer
exploits spatial correlations to improve the reconstruction quality of the frames.

Finally, RevSCI-net [20] was chosen, being one of the latest deep learning-based methods
designed for the CACTI system. In this case, there is no need to expand the tensor before entering
the deep neuronal network. On the other hand, the network has to be trained end-to-end with the
combined 3D coded aperture at the desired target density per frame, while the measured image
is used as the input to the neural net. Due to the 3D-convolutional layers of the network, both
temporal and spatial correlations of the videos are exploited by the 3D-kernels.

5. Simulations

Using the linear model of Eq. (2) and three algorithmic options for video reconstruction, we
perform simulations of the acquisition and reconstruction process for a variety of short image
sequences. We use a total of 38 datasets with a spatial resolution fixed at 256 × 256 pixels and a
temporal resolution of 256 frames. For the reconstruction, we use the NNI [18] interpolation
algorithm, LRTC-TV-II [19] tensor completion algorithm, and the RevSCI-net [20] compressive
temporal imaging reconstruction adapted to the shuffled RS equivalent coded aperture masks. The
chosen reconstruction datacube dimension has 256 × 256 pixels, but only 32 frames. Therefore
the original datacubes are reduced to the same size integrating over every eight frames to perform
fair comparisons against the reconstructed videos.

We trained what we call Tensor-RevSCI-net (TRevSCI-net), since it is a slight modification
to the original RevSCI-net adapted to perform tensor completion instead of compressive
reconstruction. Details of the network are shown in Supplement 1. We collected a dataset of 50
different grayscale videos of 512×512×400 used for data augmentation with temporal translation,
frame rotations, and magnification to increase the training set to a total of 5.000 datacubes (4950
for training and 50 for validation) of 256×256×32. Five additional videos were used for testing.
The training parameters were 100 epochs, a learning rate of 0.0001, and a batch size of 2. We
used a desktop computer equipped with a dual RTX3090 Nvidia GPU. Since this network is not
capable of generalizing an arbitrary input mask, two networks were trained: one for the random
coded aperture and the other for the designed coded aperture.

We use two performance metrics to evaluate the quality of every reconstructed frame: the
peak signal to noise ratio (PSNR) and the structural similarity index (SSIM). For the shuffled RS,
we use two coding options: a random shuffle and a designed shuffled pattern maximizing the
distance between sample voxels within the datacube. The random shuffled coding is obtained
through permutations of the original scanlines in the RS. The designed patterns are computed
using Eq. (4) once selecting an optimal combination of parameters a and b for the 3D-N2-queens
problem following the optimization procedure in Algorithm 1. In this, case, a pair of optimal a

https://doi.org/10.6084/m9.figshare.17198891
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and b parameters are selected for the experiments, corresponding to a = 39 and b = 7 for the
256 × 256 × 256 datacube.

5.1. Results

For each sampling scheme, one snapshot acquisition is obtained using the forward model in
Eq. (2). Examples for the traditional RS and the random and designed shuffled RS measurements
are depicted in Fig. 6(a), while Fig. 6(b) displays the ground-truth video. Figure 6(c,d,e) show
the frames for the reconstructed videos from the different methods. Complimentary results can
also be seen in Supplement 1.

Fig. 6. Simulation results using different reconstruction algorithms for the traditional RS,
random and designed shuffled RS coded apertures (see Visualization 1). (a) shuffled RS
measurement; (b) ground-truth frames; (c) NNI reconstructed frames; (d) LRTC-TV-II
reconstructed frames; (e) TRevSCI-net reconstructed frames.

As expected, notice that when using the traditional RS, only partial parts of the scene can be
reconstructed in every frame. The comparison in terms of the PSNR and SSIM for all the 38
datasets is shown in Table 1.

Although the tensor completion method seems to be outperformed by the interpolation in
quantitative terms, from the videos in Visualization 1 and Visualization 5 we may have the
perception that it is the opposite. Nonetheless, the neural network approach clearly outperforms
both mathematical-driven methods by large. This fact is confirmed when inspecting the videos in
Visualization 6 and Visualization 7, which are reconstructed using different temporal resolutions.
Also, we can observe from Table.1 that the designed shuffled RS slightly wins over the random
shuffle, although visually, the designed clearly brings smoother videos for all reconstruction
methods.

Finally, Fig. 7 depicts measurements from 12 out of the 38 datasets solely using the designed
shuffled RS, and the corresponding video frames reconstructed using the neural network approach
alongside. From the video associated with Fig. 7, we can notice that motion within the scene
generates a new class of artifacts and distortions in the sampled images, while reconstructing
fairly smooth videos from them.

https://doi.org/10.6084/m9.figshare.17198891
https://doi.org/10.6084/m9.figshare.16732420
https://doi.org/10.6084/m9.figshare.16732420
https://doi.org/10.6084/m9.figshare.17050325
https://doi.org/10.6084/m9.figshare.17050322
https://doi.org/10.6084/m9.figshare.17050331
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Table 1. A comparison of the video reconstruction quality in terms of PSNR and SSIM. From the
average values obtained for the 38 datasets, we display the mean, minimum, and maximum

performance obtained by every method and coding. The designed and random coded apertures are
tested with three reconstruction algorithms.

NNI LRTC TV-II TRevSCI-net

PNSR [dB]

mean min max mean min max mean min max

Random 20.38 14.10 26.07 15.18 9.71 22.10 28.87 24.50 34.05

Designed 20.30 14.19 25.86 18.13 10.20 26.07 29.05 24.47 34.93

SSIM

mean min max mean min max mean min max

Random 0.664 0.310 0.890 0.539 0.147 0.859 0.899 0.741 0.961

Designed 0.685 0.339 0.894 0.652 0.180 0.876 0.900 0.740 0.963

Fig. 7. Simulation results for 12 of the test datasets using the designed shuffled RS and
TRevSCI-net reconstructions (see Visualization 2). Every pair of images shows: (a,c,e) the
RS measurement; (b,d,f) the corresponding reconstructed video frames.

6. Experimental results

To demonstrate the effectiveness of the proposed system and the use of optimal shuffled RS codes,
we implemented an optical setup capable of emulating the spatial and temporal functioning offered
by the shuffled RS. The system is based on the CACTI design that uses a digital micromirror
device (DMD) for dynamic coding, as presented in [15]. As depicted in the scheme and picture
in Fig. 8, the proof-of-concept setup is a 4f system composed of a coded aperture implemented
using a DMD located at an imaging relay plane, which is relayed again to be integrated by a
global shutter detector. The objective lens is a 50mm Ricoh lens, the DMD is a high-speed Vialux
V-9501 with a resolution of 1920 × 1080, and the microscopic objective lens is a 4X Olympus
apochromatic. The detector is a global shutter Grasshopper CMOS sensor GS3-U3-23S6M with

https://doi.org/10.6084/m9.figshare.16732414
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1920 × 1200 pixels. To correct the depth of focus given by the DMD orientation relative to the
objectives lens (a), a tilt of 22◦ was added to the objective lens. Also, a 45◦ rotation was used in
both DMD and detector planes to compensate for the orientations of the DMD mirror actuators.
Furthermore, the presented results are obtained considering a 4 × 4 super-pixel to avoid any
DMD-sensor aliasing.

Fig. 8. Experimental setup scheme and picture of the CACTI system used for emulating the
shuffled RS. (a) Objective lens; (b), c) and (f) Relay lenses; (e) DMD; (g) Objective lens. (h)
Detector. d = 100mm.

6.1. Results

We performed a series of experimental tests capturing images using the same designed shuffled
RS patterns used in the simulations, but now sequentially displayed on the DMD during the
integration time of a global shutter acquisition, which finally emulates the RS acquisition.
Also, we used the TRevSCI-net neural network for the video reconstructions using 32 frames,
considering every frame to be sampled by a combination of 8 temporal frames of the coding
datacube. For the detector, we choose a measurement ROI of 1024 × 1024 pixels subsampled to
the matched coding resolution of 256 × 256. Also, we use an integration time of 52ms, while
for the DMD, every code pattern (shuffled scanline) is projected every 203µs, scanning the 256
scanlines within the integration time.

The measurements and the reconstructed frames are shown alongside in Fig. 9. From the
videos, we can inspect the 32 frames reconstructed from every snapshot. Therefore, as the
measurements were recorded at an equivalent frame rate of 17fps, the presented videos are
equivalent to being captured at 544fps. Nevertheless, if the scene is well illuminated, then we can
reduce even further the acquisition time and thus the fps of the reconstructed videos, although
we are not sure if this would be compatible with the actual scanline speeds found in current RS
CMOS sensors. From the measured snapshots in Fig. 9, we can notice that wherever there is
motion, there is a sort of a coded blur. This is where the motion information resides and can be
recovered during the reconstruction. We can notice the oscillatory motion of a pendulum, the
rotation of a spinning wheel, an opening hand, the drop of dices, the details of a person speaking,
and cars crashing. It is also noticeable that–for the static parts in the videos–there is a loss in
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spatial resolution that is due to the subsampling of the feature extraction part of the deep neural
network, which on the other hand helps the network with an improved generalization and a better
memory usage.

Fig. 9. Experimental results of diverse real scenes (see Visualization 3). Every pair of
images shows: (a,c) the shuffled RS measurement; (b,d) the reconstructed video frame with
the TRevSCI-net. Note that images are rotated by 45◦ to compensate for the DMD/detector
rotation.

Finally, to demonstrate even further the functionality of the proposed idea, we simultaneously
recorded with a high-speed camera the motion captured by the experimental shuffled RS scheme.
For that, we placed an HB-500SM camera (Emergent Vision) that has a Sony IMX426 detector
with 800 × 616 pixels and is capable of operating at up to 1594fps. In this case, the frame rate
was set to 1000fps and then adjusted to match the 544 fps from the reconstructed videos. The
results from these experiments can be seen in Fig. 10, where we observe a miniature car crash, the
motion of a splash cymbal, and a falling balloon filled with water. Since we took a sequence of
shuffled RS measurements, we can recover an extended video sequence, although we are not able
to replicate a fully continuous sequence such as in a normal RS sensor given to the DMD/detector
synchronization needed in our experiment. From the three dynamic scenes, we can observe one
of the captured measurements, a sample of the reconstructed frame, and one of the relatively
equivalent (with a distinct perspective) frames from the high-speed camera. From the associated
video in Fig. 10, we can observe a significant correlation between the real motion recorded in the
high-speed camera and the reconstructed videos from the shuffled RS measurements, despite the
lags between every reconstructed short scene.

https://doi.org/10.6084/m9.figshare.16732423
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Fig. 10. Experimental results for diverse real scenes (see Visualization 4). Every set of
images shows: (a) the shuffled RS measurement; (b) the reconstructed video frame with the
TRevSCI-net; (c) the high-speed video reference. Images are rotated by 45◦ to compensate
for the DMD/detector rotation.

7. Conclusion

We proposed a modification to the RS scanline mechanism found in CMOS detectors to better
sample the space-time datacube, enabling snapshot temporal imaging. The main idea resides
in shuffling the pixels in the scanline, allowing to sample spatial pixels from different rows.
We also presented a design methodology for optimal sampling schemes and compared them to
simple random shuffling. If constraining the exposure time to finish before acquiring the next
scanline, we can see the shuffled RS as a particular sampling of the space-time datacube tensor.
Therefore, in contrast with compressive temporal imaging schemes that also code and multiplex
the temporal dimension, we can treat the reconstruction problem as a tensor completion problem.
We implemented three reconstruction methods based on 3D interpolation, a state-of-the-art

https://doi.org/10.6084/m9.figshare.16732417
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tensor completion algorithm for videos, and a deep neural network used for snapshot compressive
imaging.

From our simulated results over a dataset of 38 videos, we demonstrated that all reconstruction
methods are able to recover videos that show the motion that happened in the scenes while
keeping most of the static parts untouched. Nonetheless, the neural network approach, which was
specially adapted to the shuffled RS coding scheme, surpasses by far the reconstruction quality of
the other two methods. Although the designed shuffled RS only shows a marginal gain over the
random shuffling RS approach in terms of performance, we can notice from the visual inspection
that the reconstructed videos are smoother.

We implemented an experimental test-bed based on the CACTI scheme that uses a DMD to
dynamically code the coded apertures emulation the RS functioning. However, instead of using
random codes that multiplex the temporal dimension, we constrained the coded apertures to
accommodate the demanded RS restrictions, allowing a pixel to sample a single spatial pixel at a
given time frame only once. From the experimental results, we validated the ability of the shuffled
RS to capture images that allow reconstructing videos that would otherwise be impossible if
using the traditional RS mechanism.

In conclusion, the proposed hardware modification to the RS mechanism, if implemented,
can dramatically improve the sampling diversity of the space-time datacube in contrast with
the traditional RS, allowing to recover high-speed videos from a single image using either
tensor completion methods or sophisticated neural networks. Moreover, we noticed that the
proposed methodology for the shuffled patterns leads to a regular sampling lattice within the
datacube, similarly to how many video compression methods work [23], and at the end, the
reconstructed videos confirmed that the results were visually superior. At a first glance, this can
become counter-intuitive for people working in compressed sensing, in particular for compressive
temporal video, where random realizations are often preferred. Nonetheless, the problems are
slightly different since the proposed system is not coding and multiplexing the temporal domain,
so no temporal deconvolution is needed, and that is why tensor completion or interpolation also
work. However, if we increase the exposure time, we start observing temporal multiplexing,
although not coded since it merges contiguous frames from the datacube.

Finally, if ever implemented in hardware, the shuffled RS can be seen as an alternative for
snapshot temporal imaging that do not require optical calibration nor the use of any sophisticated
computational imaging hardware, although it would never perform as well as the CACTI given
the sparsity of the sampling imposed by the RS mechanism. Future work will consider the
reconstruction issues when dealing with arbitrary exposure times and how to implement it
on CMOS hardware. For instance, longer exposure times will bring temporal multiplexing
that will turn the problem into a compressive temporal imaging problem–most likely harder
to disambiguate–while the advantages from the shuffled RS sampling may start to vanish. On
the other hand, we believe that the proposed hardware modification should be feasible to be
implemented in CMOS since even more complicated modifications were firstly demonstrated for
computational photography applications in [24], more than ten years ago.
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